04.08.2022r.

КОНТРОЛЛЕР ЛОКАЛЬНОЙ СЕТИ Promix-CN.LN.01 в.1.3

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

Техническое описание. Руководство по монтажу. Паспорт.

НАЗНАЧЕНИЕ

Контроллер локальной сети Promix-CN.LN.01 входит в состав СКУД Promix-Locker и предназначен для организации сети управления электромеханическими замками, блокираторами, иными механизмами и сканирования их текущего состояния (срабатывание датчиков, потеря связи, предъявление идентификаторов и пр.) по USB или UART интерфейсам.

Реализация технологии СКУД осуществляется устройством верхнего уровня (сервер, ПК, терминал, планшет и пр.), работающим на распространённых UNIX-подобных операционных системах, OC «Windows», а также OC устройств с UART интерфейсом.

Компоненты СКУД Promix-Locker, производимые компанией Promix:

- электромеханические замки, блокираторы и иные механизмы,
- периферийные контроллеры управления механизмами Promix-CN.PR.08, 04,
- периферийные контроллеры чтения идентификаторов Promix-CN.RD.01,
- дисплей индикации сообщений Promix-VI.DISP.01,
- контроллер локальной сети Promix-CN.LN.01,
- преобразователи интерфейса Promix-AD.RI.01 в качестве усилителя сигнала.

МАРКИРОВКА

На этикетке, приклеенной к корпусу изделия. **указаны**:

- 1. Модель изделия.
- 2. Номинальное напряжение питания.
- 3. Потребляемый ток.
- 4. Сайт предприятия-изготовителя.
- 5. Идентификационный номер.
- 6. Дата изготовления и отметка ОТК.

КОМПЛЕКТ ПОСТАВКИ

1 - Контроллер

1 шт 2 - Руководство по эксплуатации 1 шт.

1 Контроллер локальной сети Promix-CN.LN.01 6 2.3 U_H=+5B 04.2019 OTK 1 -5MA № 100 000 001 w.promix-center.ru 5 4 Сделано в России

Комплектность изделия проверяйте при покупке! В дальнейшем претензии по комплектности предприятие-изготовитель не принимает.

ФУНКЦИИ КОНТРОЛЛЕРА

- Организация связи устройства верхнего уровня (ВУ) и СКУД Promix-Locker,
- Поиск, определение контроллеров Promix, подключенных к СКУД,
- Создание, обновление таблицы контроллеров, отправка таблицы в ВУ,
- Регистрация наличия связи и питания контроллеров в СКУД,
- Регистрация событий в СКУД (срабатывание датчиков, считывателей идентификаторов и пр.) – автоматическое, ручное,
- Передача информации о контроллерах в ВУ автоматическое, по запросу,
- Установка настроек СКУД,
- Передача команд управления контроллерам,
- Гальваническая развязка цепей питания ВУ и СКУД,
- Разделение контроллеров на секции (секционирование СКУД),
- Режим ручной нештатной активации механизмов, подключённых к контроллерам СКУД,
- Световая индикация состояния связи с ВУ и контроллерами СКУД,

СОДЕРЖАНИЕ

1. Подключение, структура локальной сети и секции	3
2. Технические характеристики контроллера	3
21 Усповия эксплуатации	3
22 Технические характеристики	4
2.3 Клеммы разъёмы	4
3. Режимы работы контроллера	5
3.1. Режим инициализации контроппера	5
3.2 Режим определения СКУЛ	5
3.3. Режим сканирования СКУЛ	6
3.4. Режим прямого управления	. 6
3.5. Режим внешнего управления по UART.	. 6
3.6. Режим нештатной ситуации	. 7
4. Команды управления контроллером	. 7
5. Реализация технологии доступа	10
Проект на ячейки хранения посылок интернет-магазина	10
6. Техническое обслуживание	11
7. Хранение и транспортировка.	11
8. Требования к безопасности.	11
9 Утипизация	11
10 Гарантийные обязательства	11
11 Свилетельство о приёмке и упаковывании	12
Припожение А: Подробная схема реализации покальной сети	13
Приложение Б: Распределение устройств по зданию	13
Приложение В 1 ⁻ Инициализация контроппера с UNIX-полобной ОС	14
Приложение В 2 ⁻ Инициализация контроллера с ОС «Windows»	14
Приложение Г. Список режимов I ED инликации	14

1. ПОДКЛЮЧЕНИЕ, СТРУКТУРА ЛОКАЛЬНОЙ СЕТИ И СЕКЦИИ

На рисунке представлен базовый вариант локальной сети СКУД Promix-Locker.

- Устройство верхнего уровня (ВУ),
- контроллер Promix-CN.LN.01 (далее контроллер ЛС),
- ряд периферийных контроллеров **Promix**.

Запуск СКУД осуществляется подачей питания 12В и подключением контроллера ЛС в устройство ВУ. Операционной системой ВУ распознаётся виртуальный СОМ-порт. Подробный пример монтажа показан в приложении А.

Секционирование СКУД

Секционирование используется для удобства структурирования СКУД.

Создание секций реализуется подключением множества контроллеров ЛС в USB порты устройства ВУ. Каждая секция представляется собственным виртуальным СОМпортом с индивидуальным набором периферийных контроллеров. Количество секций ограничивается количеством USB портов устройства ВУ.

Для идентификации секции используется и рекомендуется два порядковых номера:

- номер виртуального СОМ-порта,
- номер контроллера ЛС (п.7.9 «Установить номер Promix-CN.LN.01» и п.7.3 «Передать состояние Promix-CN.LN.01»).

Пример построения секций см.п.8 «Реализация технологий доступа».

2. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

2.1 УСЛОВИЯ ЭКСПЛУАТАЦИИ

Климатические условия эксплуатации:

- устойчивость к воздействию климатических факторов по ГОСТ 15150-69: УХЛ2
- температура окружающего воздуха: от 0 до +50°С
- относительная влажность воздуха (80+3)% при 35°С без конденсации влаги
- температура хранения не ниже минус 40°С и не выше +55°С.

2.2 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Общие				
Напряжение питания контроллера	+5B			
Напряжение питания локальной сети	12±2			
Потребляемый ток, не более	5мА			
Поддерживаемые ОС верхнего уровня	UNIX-like, Windows			
Габаритные размеры	58х47х12мм			
Масса	120г			
Длина линии связи, не более	400m*			
Блок UART				
Напряжение блока UART	5B			
Скорость обмена данными по UART, не более	115.2кБод/с			

*Увеличение длины линий сети свыше 400м осуществляется преобразователем Promix-AD.RI.01, выпускаемым компанией «ИТЦ ПРОМИКС».

Контроллер содержит 2 линии питания:

1) Для питания контроллера напряжение 5В берётся от USB интерфейса.

2) Для локальной сети на клеммы 0В-+12В подаётся напряжение 12В от источника питания локальной сети.

2.3 Клеммы и разъёмы:

USB-AM	штекер соединения с устройством верхнего уровня
0B - +12B	клеммы напряжения питания локальной сети
0B - LRX	клеммы входа витой пары приёмника локальной сети
0B - LTX	клеммы выхода витой пары передатчика локальной сети
RX-TX-0B-5B	разъём подключения UART устройств
LED [USB – LAN]	светодиоды индикации режимов работы контроллера

3. РЕЖИМЫ РАБОТЫ КОНТРОЛЛЕРА

При подключении к устройству ВУ по USB (рис. ниже):

- 1. режим инициализации USB (п.3.1),
- 2. режим определения СКУД (п.3.2),
- 3. режим сканирования СКУД (п.3.3),
- 4. режим прямого управления СКУД (без сканирования) (п.3.4).

При подключении к устройству ВУ по UART:

- 5. Режим внешнего управления по UART (п.3.5).

При подключении к источнику питания 5В (внешние аккумуляторы):

- 6. Режим нештатной ситуации (см. п.3.6).

3.1. Режим инициализации предназначен для настройки USB интерфейса. На рисунке ниже представлена схема инициализации. Подробная инициализация для операционных систем описана в приложении В.

После инициализации требуется открытие порта с параметрами:

Скорость 2400кБод/с, 8 бит данных, проверка на чётность – нет, стоповый бит – 1, управление потоком – нет.

3.2. Режим определения предназначен для обнаружения устройств в СКУД. Выполняется автоматически и индицируется флагом «режим работы» команды «Получить состояние Promix-CN.LN.01» (п.4.3), а также светодиодом LED LAN (для проверки корректности монтажа локальной сети).

Поставщик систем безопасности TELECAMERA.RU

Promix-CN.LN.01

По завершению устройство ВУ должно запросить информацию о СКУД командой «Передать таблицу устройств СКУД» (п.4.2).

Обнаружение производится поиском номеров устройств, начиная с нулевого номера (адресация описывается в инструкциях периферийных контроллеров).

Не обнаружится. Переход с №1 к №6 = разница больше, чем на 3 номера

3.3. Режим сканирования предназначен для опроса периферийных контроллеров и регистрации событий в СКУД (срабатывание датчиков механизмов, предъявление идентификаторов и пр.). Индицируется горением светодиода LED LAN.

Режим сканирования представлен в 2 вариантах, переключаемых командой «Установить вариант передачи событий» (п.4.6).

1) Автоматическая передача событий СКУД:

Закрытие дверцы шкафа	=	Сраба тывание да тчика	Чтение состояния датчика	Передача события в устройство ВУ
--------------------------	---	---------------------------	-----------------------------	--

2) По запросу устройства ВУ. События хранятся в контроллере ЛС и передаются командой «Передать зарегистрированные события» (п.4.1):

Закрытие дверцы шкафа = Срабатывание Чтение состояни датчика датчика	Хранение накопленных событий Команда «Передать зарегистр. события»	Передача всех событий в устройство ВУ
--	---	---

Команда запроса должна отправляться с интервалом не более 2 секунд во избежание потери информации о событиях в СКУД.

Проверка связи с периферийными контроллерами СКУД

Состояние потери или наличия связи с контроллерами СКУД указывается дополнительным байтом к формату события:

> 89 00 FF FF 00 - связь потеряна,

> 89 00 FF FF 01 – связь установлена.

Потеря связи со всеми контроллерами индицируется двойным миганием LED LAN.

Ускорение опроса периферийных контроллеров

При использовании механизмов без датчиков в одной секции имеется возможность ускорения сканирования считывателей идентификаторов за счёт отключения опроса контроллеров Promix-CN.PR.08, 04 командой «Выключить сканирование» (п.4.5).

3.4. Режим прямого управления предназначен для ретрансляции команд периферийным контроллерам без участия Promix-CN.LN.01. Режим сканирования отключён.

Вход в режим осуществляется командой «Включить режим прямого управления» (п.4.10), выход переподключением USB порта. Индицируется отключённым LED LAN и кратковременным морганием LED LAN при передаче данных.

Режим может использоваться, как конвертер интерфейсов USB-UART. Максимальная скорость передачи для конвертера – 115.2кБод/с.

3.5. Режим внешнего управления по UART предназначен для управления СКУД **Promix-Locker** устройствами верхнего уровня с поддержкой интерфейса UART

через отдельные выводы «Блок UART» (рис.п.2.2). Параметры порта UART п.3.1.

3.6. Режим нештатной ситуации предназначен для экстренной активации механизмов системы доступа (открытие шкафов, блокираторов) при непреднамеренном отключении устройства верхнего уровня (отсутствие общей электроэнергии, форсмажорные обстоятельства).

Вход в режим осуществляется подключением контроллера к устройству внешнего питания 5В (например, аккумулятор – Power Bank).

Активация механизмов начинается нажатием кнопки на плате контроллера и производится последовательно в автоматическом режиме.

Для защиты превышения максимального потребления тока ИБП используется задержка. Настройка задержки осуществляется командой «Задать задержку активации механизма» (см. п.4.6). Значение задержки по умолчанию = 0.5с.

4. КОМАНДЫ УПРАВЛЕНИЯ КОНТРОЛЛЕРОМ

Управление СКУД **Promix-Locker** осуществляется командами, передаваемыми по USB интерфейсу байтами в **HEX** формате.

4.1. Команда «Передать зарегистрированные события» (только для режима сканирования по запросу п.3.3 2))

» байты 0-3 – FFh – стартовый заголовок,

» байт 4 – 9Ah – заголовок обращения к CN.LN.01,

» байт 5 – B0h – заголовок команды.

Пример > FF FF FF FF 9A B0

Ответ на команду «Передать новые события»

» байт 0 – 9Bh – заголовок ответа CN.LN.01,

- » байт 1 B0h заголовок команды,
- » байт 2-3 количество байт ответа,
- » байты 4... ответ с событиями.
- > 9B B0 NN NN ...

4.2. Команда «Передать таблицу устройств СКУД»

- » байты 0-3 FFh стартовый заголовок,
- » байт 4 9Ah заголовок обращения к CN.LN.01,
- » байт 5 B1h заголовок команды.
- > FF FF FF FF 9A B1

Ответ на команду «Передать таблицу устройств СКУД»

- » байт 0 9В заголовок ответа контроллера,
- » байт 1 В1 заголовок команды,
- » байт 2-3 количество байт ответа,
- » байты 4... ответ с состоянием всех устройств в СКУД.
- > 9B B1 NN NN ...

4.3. Команда «Передать состояние CN.LN.01»

» байты 0-3 – FFh – стартовый заголовок,

» байт 4 – 9Ah – заголовок обращения к CN.LN.01,

» байт 5 – B2h – заголовок команды.

> FF FF FF FF 9A B2

Ответ на команду «Передать состояние CN.LN.01»

» байт 0 – 9Bh – заголовок ответа CN.LN.01,

- » байт 1 B2h заголовок команды,
- » байт 2 номер CN.LN.01 (секции),
- » байт 3 XXh байт флагов режимов работы CN.LN.01:

X0h – режим определения СКУД,

X1h – режим сканирования,

0Xh – вариант отправки событий по запросу,

1Xh – вариант автоматической отправки событий,

» байты 4-5 – информация о включенных контроллерах (см.п.4.5):

байт 4 – 00h – старший байт,

байт 5 – b B⁷ B⁶ B⁵ B⁴ B³ B² B¹ B⁰ – младший байт,

бит 0 – В⁰ – контроллер Promix-CN.PR.04,

- бит 1 В¹ зарезервировано,
- бит 2 В² контроллер Promix-CN.RD.01,
- бит 3 В³ контроллер Promix-CN.PR.08,

бит $4 - B^4 - замок Promix-SM307$,

0 – опрос типа устройства выключен, 1 – опрос включён,

» байт 6 – XXh – время активации механизмов в режиме нештатной ситуации,

- » байты 7-17 информация о количестве найденных контроллерах в секции:
 - байт 7 82h указатель количества контроллеров Promix-CN.PR.04,
 - байт 8 количество контроллеров Promix-CN.PR.04,
 - байт 9 84h зарезервировано,

байты 10-11 – зарезервировано,

байт 12 - 86h - указатель количества контроллеров Promix-CN.RD.01,

байт 13 - количество контроллеров Promix-CN.RD.01,

байт 14 – 88h – указатель количества контроллеров Promix-CN.PR.08,

- байт 15 количество контроллеров Promix-CN.PR.08,
- байт 16 8Ah указатель количества замков Promix-SM307,
- $> 9B^0 B2^1 00^2 11^3 00^4 1F^5 05^6 82^7 02^8 84^9 00^{10} 00^{11} 86^{12} 05^{13} 88^{14} 01^{15} 8A^{16} 00^{17}$

4.4. Команда «Переопределить СКУД» (п.3.2)

- » байты 0-3 FFh стартовый заголовок,
- » байт 4 9Ah заголовок обращения к CN.LN.01,
- » байт 5 B3h заголовок команды.
- > FF FF FF FF 9A B3

4.5 Команда «Выключить сканирование» (п.3.3 «Ускорение опроса»)

- » байты 0-3 FFh стартовый заголовок,
- » байт 4 9Ah заголовок обращения к CN.LN.01,
- » байт 5 B4h заголовок команды,
- » байт 6 XXh тип устройства и отключение/включение сканирования:
 - 0Xh контроллер Promix-CN.PR.04,
 - 1Xh зарезервировано,
 - 2Xh контроллер Promix-CN.RD.01,
 - 3Xh контроллер Promix-CN.PR.08,
 - 4Xh замок Promix-SM307,
 - X = 0 отключение сканирования,

Поставщик систем безопасности TELECAMERA.RU

Promix-CN.LN.01

X = 1 – включение сканирования.

FAh – включение сканирования всех устройств,

FFh – выключение сканирования всех устройств,

> FF FF FF FF 9A B4 30 – отключить сканирование Promix-CN.PR.08,

> FF FF FF FF 9A B4 FA – включить сканирование всех устройств.

4.6. Команда «Задать задержку активации механизма» (п.3.5 «Режим нештатной ситуации»)

» байты 0-3 – FFh – стартовый заголовок,

» байт 4 – 9Ah – заголовок обращения к CN.LN.01,

» байт 5 – B5h – заголовок команды,

» байт 6 – XXh – значение задержки активации механизма. Каждая единица значения соответствует 0.1 секунде.

> FF FF FF FF 9A B5 02 (0.2c)

4.7. Команда «Установить вариант передачи событий» (п.3.3 «Передача событий»)

» байты 0-3 – FFh – стартовый заголовок,

» байт 4 – 9Ah – заголовок обращения к CN.LN.01,

» байт 5 – B8h – заголовок команды,

» байт 6 – 00h – передача событий по запросу,

– 01h – автоматическая передача событий.

> FF FF FF FF 9A B8 00 – включена передача событий по запросу,

> FF FF FF FF 9A B8 01 – включена автоматическая передача событий.

4.8. Команда «Установить номер CN.LN.01»

(п.1 «Секционирование СКУД»)

» байты 0-3 – FFh – стартовый заголовок,

» байт 4 – 9Ah – заголовок обращения к CN.LN.01,

» байт 5 – B9h – заголовок команды,

» байт 6 – NNh – номер CN.LN.01,

> FF FF FF FF 9A B9 NN

Дополнительная функция: возврат к заводским настройкам – установка номера FFh.

4.9. Команда «Сброс настроек CN.LN.01»

» байты 0-3 – FFh – стартовый заголовок,

» байт 4 – 9Ah – заголовок обращения к CN.LN.01,

- » байт 5 B9h заголовок команды,
- » байт 6 FFh,
- > FF FF FF FF 9A B9 FF

4.10. Команда «Включить режим прямого управления» (п.3.4 «Режим прямого управления»)

- » байты 0-3 FFh стартовый заголовок,
- » байт 4 9Ah заголовок обращения к CN.LN.01,
- » байт 5 BFh заголовок команды.
- > FF FF FF FF 9A BF

5. РЕАЛИЗАЦИЯ ТЕХНОЛОГИИ ДОСТУПА

Представлено краткое описание проекта технологии доступа (п.5.1), а также пример схемы распределения устройств на объекте.

Проект на ячейки хранения посылок интернет магазина.

Используется 3 секции:

- 90 ячеек для посылок,
- 10 ячеек личных вещей курьеров,
- 2 однонаправленных турникета (вход, выход) на проходной для всех сотрудников.

Доступ к личным ячейкам имеют курьеры, которым они назначены. Доступ к ячейкам посылок имеется у всех курьеров. Открытие ячейки для посылок осуществляется предъявлением идентификатора и выбором номера ячейки на сенсорном табло. Выдача новых идентификаторов осуществляется администратором.

Выбор устройств

1	2	3	4	5
Оборудование	Контроллер	N⁰	№ замка	№ датчика
Турникет №1	Bromix CN BB 04	0	0	0
Турникет №2	FIOIIIX-CN.FR.04		1	1
Личная ячейка №1		0	0	0
Личная ячейка №2	Promix CN PP 09	0	1	1
	FIOIIIX-CN.FR.00			
Личная ячейка №10		1	1	1
Ячейка для посылок №1	Dramin CN DD 00	4	2	2
Ячейка для посылок №1			3	3
	FIOIIIX-CN.FK.00			
Ячейка для посылок №90		12	3	3
Считыватель турникета №1		0		
Считыватель турникета №2				
Считыватель ячеек №1	Promix-CN.RD.01	2		
Считыватель ячеек №2		3		
Считыватель администратора		4		
	Dramin Chill N 01			
	FIOINIX-CN.LN.UT	2		

На проходной:

- 2 считывателя идентификаторов (на вход, на выход),

- 2 контроллера считывателя Promix-CN.RD.01,
- 1 контроллер Promix-CN.PR.04 (для замков и датчиков турникетов). Для ячеек:
- 13 контроллеров Promix-CN.PR.08 (для замков и датчиков ячеек),
- 100 замков Promix-SM104,
- 2 считывателя идентификаторов (для личных ячеек и ячеек посылок),
- 2 контроллера считывателя Promix-CN.RD.01.
- Сенсорное табло.

Для администратора:

- 1 считыватель идентификаторов (занесение идентификаторов в базу),

Поставщик систем безопасности TELECAMERA.RU

Promix-CN.LN.01

- 1 контроллер считывателя Promix-CN.RD.01.

Для данных трёх секций выбираются 2 контроллера Promix-CN.LN.01: 1 для обслуживания проходной и стойки администратора, 1 на ячейки курьеров.

Монтажные работы

1. Выделение мест для установки оборудования и периферийных устройств.

2. Составление монтажных таблиц трёх секций с указанием соответствия номеров ячеек номерам контроллеров (см. таблицу ниже).

3. Составление монтажной схемы соединений в единую сеть:

замков и датчиков турникетов с контроллером Promix-CN.PR.04, замков ячеек и датчиков дверок с Promix-CN.PR.08, считывателей с контроллерами Promix-CN.RD.01.

4. Монтаж замков и датчиков. Монтаж контроллеров замков и их соединений. Соединение замков и датчиков с контроллерами. Установка сетевых номеров контроллеров замков (столбец 4 таблицы ниже).

5. Монтаж считывателей и контроллеров Promix-CN.RD.01, табло, преобразователя интерфейса, ретрансляторов, источников питания.

6. Установка в соответствии с монтажной таблицей номеров контроллеров (данную работу желательно проводить одновременно с монтажом оборудования).

Тестирование системы производится подключением контроллеров Promix-CN.LN.01 к ПК. Светодиод LED UART должен моргать во время поиска оборудования и загореться постоянно при завершении поиска. Если светодиод не загорелся постоянно, то связь с устройствами не установлена - требуется проверка монтажа. Сбор подробной информации о подключённых периферийных устройствах осуществляется командой п.4.2 «Передать таблицу устройств СКУД.

Наладка программного обеспечения ПК

1. Считывателем администратора набирается база идентификаторов доступа. Идентификаторы раздаются сотрудникам и курьерам.

2. ПО должно осуществляться

- приём от контроллера ЛС пакеты состояний датчиков периферийных устройств и предъявления идентификаторов.
- поиск по базе идентификаторов.
- управление периферийными устройствами (открытие ячейки, пропуск турникета).
- вывод информации на табло (выбор ячейки, цветовая схема доступа к ячейке и т.п.).

Схема распределения устройств на объекте к технологии доступа в здание

Примерная схема распределения устройств представлена в приложении Б.

Система доступа предназначена для автоматизации прохода, хранения личных вещей посетителей и сотрудников (1 этаж), их транспорта (подземный этаж) и других вещей (2-3 этажи). Выбор периферийных устройств производится исходя из технического задания к технологии доступа.

6. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

Изделие не нуждается в специальном техническом обслуживании.

7. ХРАНЕНИЕ И ТРАНСПОРТИРОВКА

До ввода в эксплуатацию изделия должны храниться в транспортной упаковке предприятия-изготовителя в хранилищах с температурой окружающего воздуха от плюс 1 до плюс 40 °C и относительной влажности не более 80% при температуре плюс 25°C в соответствии с условиями хранения 1 согласно ГОСТ 15150-69.

Условия транспортирования в транспортной таре в зависимости от воздействия механических факторов должны соответствовать группе С по ГОСТ 23216-78, в зависимости от воздействия климатических факторов - Ж2 по ГОСТ 15150-69.

8. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

В связи с низким напряжением питания постоянного тока изделия соответствуют классу III по ГОСТ. 12.2.007.0-75 и являются электробезопасными.

9. УТИЛИЗАЦИЯ

Изделие не представляет опасность для жизни, здоровья людей и окружающей среды, после окончания срока службы его утилизация производится без принятия специальных мер защиты окружающей среды.

10. ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА

Предприятие-изготовитель ООО «ИТЦ «ПРОМИКС» гарантирует соответствие изделия Promix-CN.LN.01 требованиям действующих ТУ при соблюдении правил транспортировки, хранения, монтажа и эксплуатации, установленных в настоящем руководстве.

Гарантийный срок эксплуатации изделий – 12 месяцев со дня продажи, но не более 18 месяцев со дня приемки ОТК предприятия-изготовителя

В течение гарантийного срока ООО «ИТЦ «ПРОМИКС» обязуется бесплатно производить ремонт неисправного изделия. Расходы по доставке изделия к месту ремонта и обратно несет Покупатель.

Гарантийные обязательства не распространяются на дефекты или повреждения, возникшие вследствие:

- Неправильного технического обслуживания Покупателем;
- Использования изделий в условиях, не соответствующих требованиям эксплуатации;
- Механических повреждений или разборки изделий Покупателем;
- Нарушения правил транспортировки и хранения.

После истечения срока гарантийного обслуживания предприятие-изготовитель обеспечивает послегарантийное обслуживание изделия на договорной основе.

С целью повышения качества изделия предприятие-изготовитель оставляет за собой право вносить изменения в конструкцию изделия без предварительного уведомления.

11. СВИДЕТЕЛЬСТВА О ПРИЕМКЕ И УПАКОВЫВАНИИ

Контроллер Promix-CN.LN.01 в количестве _____ штук (по умолчанию 1шт.) с указанной на корпусе датой выпуска и отметкой ОТК изготовлен и принят в соответствии с обязательными требованиями государственных стандартов и действующей технической документацией, признан годным для эксплуатации и упакован ООО «ИТЦ «ПРОМИКС».

OOO «Инженерно-технический центр «ПРОМИКС» Россия, 214030, г. Смоленск, Краснинское ш., 35, лит. А Тел. (4812) 619-330 www.promix-center.ru vk.com/Promixcenter www.facebook.com/Promixcenter mail@promix-center.ru

Приложение А.

Подробная схема реализации локальной сети

Приложение Б.

Распределение устройств на объекте

Приложение В.1

Инициализация контроллера

с UNIX-подобными ОС

При первом подключении контроллера к ПК с UNIX-подобными операционными системами, ОС автоматически определит виртуальный СОМ порт и задаст ему номер: dev/ttyACMx,

где ttyACMx – это ttyACM0, но если к ПК подключены другие виртуальные СОМ порты

(контроллеры) назначается иной номер.

Для определения номера порта, назначенного контроллеру, необходимо выполнить следующий алгоритм:

1. Открыть консоль,

2. Удостовериться, что контроллер подключен к ПК,

3. Ввести: Isusb,

4. В ответ появится строка подобного содержания: Bus 005 Device 004: ID 04d8:000a Microchip Technology, Inc.,

5. Введите: modprobe cdc-acm vendor=0x04d8 product=0x000a,

6. Введите: dmesg,

7. В ответ появится номер ttyACMx: cdc_acm 5-1:1.0: ttyACM0: USB ACM device.

Узнав номер виртуального СОМ порта ttyACMx, ПО системы осуществляется конфигурация порта и вступление в работу.

Приложение В.2

Инициализация контроллера

c OC «Windows»

При первом подключении контроллера к ПК с ОС «Windows» до 10 версии, требуется установка драйвера контроллера со страницы Promix-CN.LN.01 интернет-сайта **Promix** или поиск драйвера по VID/PID контроллера. Для «Windows 10» драйвер не требуется.

В окне установки драйвера нового устройства выбирается каталог ./inf из архива Promix-CN.LN.01_WinDriver.

После установки драйвера ОС назначает номер виртуального СОМ порта. ПО системы управления осуществляется конфигурация порта и вступление в работу.

Приложение Г

Список режимов LED индикации

Отсутствие индикации – контроллер выключен, Мигание LED USB – режим инициализации, Горение LED USB – инициализация завершена, Мигание LED LAN частое – режим конфигурации, Мигание LED LAN двойное медленное – потеря связи со всеми устройствами.

Горение LED LAN – режим опроса.